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ABSTRACT
In this article, a unified Markov chain Monte Carlo (MCMC) framework is proposed to identify multiple

quantitative trait loci (QTL) for complex traits in experimental designs, based on a composite space
representation of the problem that has fixed dimension. The proposed unified approach includes the
existing Bayesian QTL mapping methods using reversible jump MCMC algorithm as special cases. We
also show that a variety of Bayesian variable selection methods using Gibbs sampling can be applied to
the composite model space for mapping multiple QTL. The unified framework not only results in some
new algorithms, but also gives useful insight into some of the important factors governing the performance
of Gibbs sampling and reversible jump for mapping multiple QTL. Finally, we develop strategies to improve
the performance of MCMC algorithms.

MANY complex traits are controlled by multiple eral and widely applicable technique (Green 1995,
genetic [quantitative trait loci (QTL)] and envi- 2003). It appears to be suited for implementing model

ronmental factors. Mapping QTL is the process of esti- selection procedures across a wide range of possible
mating the number of QTL, their genomic positions, genetic architectures. However, this flexible method has
and genetic effects conditional on the observed pheno- been deemed somewhat “difficult” to understand, cum-
typic data and marker data. This is essentially a problem bersome to conduct, and difficult to tune. It also has
of model selection (e.g., Broman and Speed 2002; Sil- been noted that the reversible-jump MCMC is usually
lanpää and Corander 2002). QTL mapping is compli- subject to poor mixing and slow convergence. There-
cated by the fact that the number of QTL and hence fore, there seems to be a need for further methodologi-
the dimensionality of the parameter space are unknown. cal work on improving the efficiency of reversible jump.
Recently, the Bayesian methods and Markov chain The improved frameworks have been established re-
Monte Carlo (MCMC) algorithms have been applied to cently for conventional statistical models (Godsill
jointly infer the number of QTL, their genomic posi- 2001; Brooks et al. 2003; Green 2003). It is clear that
tions, and genetic effects. The reversible-jump MCMC Bayesian QTL mapping can benefit from renewed re-
algorithm introduced by Green (1995) can move be- search efforts.
tween models of different dimension and has become For conventional linear models, a variety of MCMC
an almost routine tool in Bayesian QTL mapping (Hoes- methods have been proposed for variable selection, in-
chele 2001). Using the reversible-jump MCMC method, cluding the variable selection algorithms of Smith and
we can in principle jointly infer the genetic model of a Kohn (1996) and Kuo and Mallick (1998), the MCMC
complex trait and the associated genetic parameters, model combination (MC3) technique of Raftery et al.
including the number, positions, and genetic effects of (1997), the Gibbs variable selection of Dellaportas et
the identified QTL. Recently, a variety of reversible- al. (2002), and the stochastic search variable selection of
jump algorithms have been conducted to map QTL in George and McCulloch (1993). For certain situations,
both experimental designs (Satagopan and Yandell these different methods have their own advantages. To
1996; Sillanpää and Arjas 1998, 1999; Stephens and date, however, they have been rarely applied to the area
Fisch 1998; Yi and Xu 2000; Gaffney 2001) and pedi- of mapping QTL (but see Broman and Speed 2002; Yi
grees (Heath 1997; Uimari and Hoeschele 1997; Xu et al. 2003b). The variable selection methods, originally
and Yi 2000; Uimari and Sillanpää 2001; Yi and Xu

derived from diverse procedures, have been recently2001).
shown to relate closely to Green’s reversible-jump MCMCThe reversible-jump MCMC algorithm is a very gen-
(Clyde 1999; Ntzoufras 1999; Godsill 2001; Della-
portas et al. 2002). Godsill (2001) recently introduced
a composite model space framework that embraces not

1Address for correspondence: Department of Biostatistics, Ryals Public only all of the above variable selection methods, butHealth Bldg., 1665 University Blvd., University of Alabama, Birming-
ham, Alabama 35294-0022. E-mail: nyi@ms.soph.uab.edu also the reversible jump. The composite space method,
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which is a modification of the product space used by
yi � � � �

K

j�1

�jxij �j � ei , (2)
Carlin and Chib (1995), provides an interesting view-
point on model selection, since it allows MCMC simula-

where �j is an indicator variable that denotes that thetion to be performed, at least conceptually, on a fixed
jth QTL is included (�j � 1) in the model or excludeddimension space. Under the composite space represen-
from the model (�j � 0). Note that the number of QTLtation, the Bayesian variable selection methods de-
does not explicitly appear in model (2). This parameterscribed above and the reversible-jump algorithm can
equals the number of 1’s in � � {�j }K

j�1 .be shown to derive straightforwardly from a general
Model (2) is similar to that used in Bayesian variableframework. These relationships between the methods

selection for the linear regression model (e.g., Kuo andcan aid our understanding of MCMC model selection
Mallick 1998). The idea of adding the indicator vari-procedures and may assist in the development of im-
able in the model facilitates setting up MCMC algo-proved procedures.
rithms. As in the linear regression model, we treat K asIn this study, we propose a composite space presenta-
known and thus in model (2) the total number of possi-tion for the multiple-QTL model and develop a unified
ble effects is fixed.MCMC framework for exploring the posterior of the

The choice of the constant K depends on the methodcomposite space. The proposed unified approach in-
and the aim in the analysis. In marker analysis, eachcludes the existing Bayesian QTL mapping methods
marker is treated as a potential QTL and thus K equalsusing reversible-jump MCMC algorithm as special cases.
the number of markers (Ball 2001; Broman and SpeedWe also show that a variety of Bayesian variable selection
2002; Xu 2003; Yi et al. 2003b). In QTL mapping, onemethods using Gibbs sampling can be applied to map
does not know a priori how many QTL to expect for amultiple QTL. The unified framework sheds some light
given trait. We here propose two methods for choosingupon the important factors governing the performance
K : (1) As in almost all existing Bayesian mapping meth-of Gibbs sampling and reversible jump for mapping
ods, we assume that there are at most K QTL in themultiple QTL. We also develop strategies to improve
entire genome, and (2) we assume that there are atthe performance of MCMC algorithms.
most Kc QTL on the c th chromosome. Then we have
K � �cKc . As an extreme case, we could assume that
each marker interval is associated with a QTL and thusTHE MULTIPLE-QTL MODEL
Kc is identical to the number of marker intervals on the

We consider a mapping population derived from two c th chromosome. The assumption that there is at most
or multiple inbred lines. Suppose that the quantitative one QTL on a marker interval is not a fundamental
trait under investigation is affected by l loci (QTL). If requirement for the proposed method. Generally, the
no epistasis is assumed, the observed phenotypic value value of K can be smaller than the number of marker
of individual i, yi , can be described by the linear model intervals. The value of K should account for the data

information and the previous results obtained by using
yi � � � �

l

j�1

xij �j � ei , (1) other QTL mapping methods. As is seen later, alterna-
tively, we can use particular prior distributions on the

where � is the population mean, xij denotes the geno- parameters in the model to relieve the influence of K
type indicator of the jth QTL for individual i, �j is the on the performance of the proposed algorithms. In
vector of genetic effects associated with the jth QTL, particular, these prior distributions account for the sam-
and ei is the residual error assumed to follow N(0, � 2). ple size n, the marker information, and the upper bound
The definitions of xij and �j depend on the experimen- of QTL K.
tal design. For an F2 cross, for example, we have that In the following sections, we first propose a composite

space representation of the problem for mapping multi-
ple QTL based on model (2). We then discuss the speci-

xij �






(1 �0.5)T if the genotype is QQ
(0 0.5)T if the genotype is Qq and �j � (aj , dj )T

(�1 �0.5)T if the genotype is qq,
fications of the prior distributions on the unknowns.
Finally, we develop a unified MCMC framework for ex-
ploring the composite model space.where aj and dj are the additive and dominance effects

of the jth QTL, respectively.
The above model is typically used in Bayesian map-

THE COMPOSITE SPACE FOR THEping implemented via the reversible-jump MCMC algo-
MULTIPLE-QTL MODEL

rithm. In this model, the number of QTL is treated as
In QTL studies, we observe the phenotypic trait anda random variable, and thus the total number of possible

a set of marker genotypes. Assume that marker linkageeffects is unknown. In practical implementation of re-
maps have been developed on the basis of the observedversible-jump MCMC, we usually assume that the ran-
marker data so that the locations of the markers ondom variable l has an upper bound K. Model (1) can

be rewritten as each chromosome are known a priori. Our aim is to
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jointly infer the number of QTL, their genomic posi- genotype indicators, which can be calculated using
multipoint methods (Jiang and Zeng 1997). p(��|�, x�)tions, and genetic effects. This can be viewed essentially

as a problem of model selection. In model (2), the is the prior distribution of the used parameters, which
may depend on x�. p(���|�) is the prior distribution ofnumber of QTL is determined by the vector of indicator

variables � � {�j }K
j�1 . Hereafter, we call the vector � the the unused genetic effects.

The key feature of the composite model space is thatmodel index, which indicates which QTL are present
in the model. the dimension remains fixed even when the model in-

dex � or the number of QTL changes. This remarkableIn marker analysis, model (2) is essentially a usual
linear regression model in that each coefficient xij is feat is achieved by augmenting the varying dimensional

space (�, ��, x�, ��) to the fixed dimensional space (�,observed. In QTL mapping, the coefficients in the
model, x � {xij }n,K

i�1, j�1 , are unobservable, and the loca- �, x, �). Simulation of p(�, �, x, �|y) then can be ad-
dressed via standard MCMC algorithms for a distribu-tions of K QTL, � � {�j }K

j�1 , are also unknown. Denote
� � {�j }K

j�1 and � � (�, �, �2). We partition (�, x, �) tion of fixed dimension (Godsill 2001). Thus conver-
gence properties of these algorithms are inherited frominto (��, x�, ��) and (���, x��, ���), representing the

unknowns included (�j � 1) or excluded (�j � 0) from standard MCMC theory. Furthermore, the composite
space approach provides a method to use the importantthe model, respectively, where �� � (��, �, �2) and

��� � ���. Hereafter, we call (�, �, x, �) the composite parameters for models other than the current model for
efficient proposal design (Godsill 2003; Green 2003).space for the multiple-QTL model. For the detailed

description about the composite space for model uncer-
tainty problems, the reader is referred to Godsill

PRIOR SPECIFICATIONS(2001, 2003).
Under model (2), the likelihood function for a partic- The statistical properties of the Bayesian approach

ular � depends only upon the parameters (x�, ��) used rest squarely on the specification of the prior distribu-
by that model, i.e., tions on the unknowns. This is especially true in map-

ping multiple QTL across the entire genome. In thisp(y|�, x, �) � p(y|�, x�, ��). (3)
section, we discuss the prior distribution of the compos-

We assume that the prior distribution of (�, �, x, �) ite model space for the multiple-QTL model.
can be partitioned as For the specification of the model index, most Bayes-

ian variable selection implementations have used inde-p(�, �, x, �) � p(�)p(�, �, x|�)
pendence priors of the form

� p(�)p(��, x�, ��|�)p(���, x��, ���|�, ��, x�, ��).
(4) p(�) � �

K

j�1

w�j
j (1 � wj)1��j . (8)

The full posterior distribution of the composite model
Under this prior, each QTL enters the model indepen-space (�, �, x, �) can now be expressed as
dently of the other QTL, with probability p(�j � 1) �

p(�, �, x, �|y) � p(y|�, x�, ��)p(�)p(��, x�, ��|�) 1 � p(�j � 0) � wj . In QTL mapping, a reasonable
reduction may be to set wj � w, yielding· p(���, x��, ���|�, ��, x�, ��). (5)

p(�) � wl(1 � w)K�l, (9)Note that here we have suppressed the notation for
conditional on the observed marker data.

where l is the number of QTL equal to the number ofIn the above posterior distribution, p(�) is the prior
1’s in �. The hyperparameter w is the prior expecteddistribution of the model index. p(��, x�, ��|�) is the
proportion of QTL included in the model. In particular,joint prior distribution of the used unknowns, which
setting w � 1⁄2 yields the popular uniform priorcan be partitioned into three components:

p(�) � 1⁄2K, (10)p(��, x�, ��|�) � p(��|�)p(x�|��)p(��|�, x�). (6)
which gives the same prior weight to all models and isThe prior for the unused unknowns, p(���, x��, ���|�,
widely used as noninformative prior in variable selection��, x�, ��), may be called “pseudo-prior.” It is reasonable
problems (Ntzoufras 1999). However, this prior actu-to assume that (���, x��, ���) is a priori independent
ally puts most of its weight near models with K/2 QTLof (��, x�, ��). The pseudo-prior can be factorized into
(Chipman et al. 2001). Alternatively, we could put athree components:
Poisson prior with a predetermined mean L on the

p(���, x��, ���|�, ��, x�, ��) � p(���|�)p(x��|���)p(���|�). number of QTL or the number of 1’s in �, i.e.,
(7)

p(�) �
Ll

l !
e�L. (11)In Equations 6 and 7, p(��|�) and p(���|�) are the

prior distributions of the locations of QTL. p(x�|��)
and p(x��|���) are the probability distributions of QTL The locations of QTL are assumed to be independent
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a priori and uniformly distributed across the entire ge- hyperprior distributions on w or L and � or c (e.g., Chip-
man et al. 2001; Gaffney 2001).nome or the corresponding regions. If we suppose that

there are at most Kc QTL on the c th chromosome, Kc

QTL could be uniformly distributed on this chromo-
POSTERIOR CALCULATION AND EXPLORATIONsome. Since it is usually difficult to distinguish multiple

QTL on a marker interval (e.g., Lynch and Walsh In this section, we develop a unified MCMC frame-
1998), it may be reasonable to assume that there is at work for simulating from the posterior distribution, p(�,
most one QTL on a marker interval although this is not �, x, �|y), which includes the existing reversible-jump
a fundamental requirement for our method. Further- algorithms as special cases and also provides some new
more, this assumption can limit the model space. methods for mapping multiple QTL. It is seen that stan-

The prior for the overall mean � is normally distrib- dard Gibbs samplers applied to the composite model
uted with mean 	0 and variance 
2

0. We could choose space produce several well-known Bayesian variable se-
	0 � 0 or y � (1/n)�n

i�1yi and 
2
0 � s 2

y � (1/(n � 1)) lection methods developed for the linear regression
�n

i�1(yi � y)2. We choose an inverse �(a, b) as the prior model, while a more sophisticated Metropolis-Hastings
of �2. Gaffney (2001) suggested a � 3 and b � s 2

y , which (M-H) approach produces a version of the reversible-
has prior mean and variance equal to s 2

y/2. Alternatively, jump algorithm. We also propose strategies to improve
we could take p(�2) � 1/�2 or p(�2) � 1. efficiency of Bayesian mapping.

We could use three types of prior distributions for The full conditional posterior distributions for �� and
the genetic effect �. First, we could use a normal prior

��� are given by
for each vector of genetic effects, i.e., �j � N(0, �), j � 1,
. . . , K, where the prior mean of zero reflects indifference p(��|�, �, x, ���, y) � p(y|�, x�, ��)p(��|�, x�) (12)
between positive and negative values, and � is the prior

p(���|�, �, x, ��, y) � p(���|�). (13)covariance matrix. The covariance matrix � could be
chosen to be diagonal. In this prior specification, the The full conditional posterior distributions for elements
prior distribution for each QTL is identical and is inde- of ��, e.g., �, ��, and � 2, can be easily derived from
pendent of �j . Most Bayesian mapping methods have Equation 12. These posteriors have standard forms and
used this type of prior distribution. This prior has been thus can be easily sampled (e.g., Gelman et al. 1995). It
used by Kuo and Mallick (1998) in Bayesian variable can be seen that the parameters unused in the model
selection for a linear regression model. Second, we do not influence the posterior of ��. Since the unused
could use the prior p(�j |�j) � (1 � �j)N(0, �) � �jN(0, parameters do not contribute to the likelihood, the
c 2�), where c 2 is a predetermined constant. This prior posterior of ��� is identical to its prior. For some algo-
has been used by George and McCulloch (1993) and rithms developed later, the values of ��� are used to
Dellaportas et al. (2002) for a linear regression model. update the model index and thus ��� needs to be gener-
Third, we could use p(��|�, x�) � N(0, c 2(x��x�)�1� 2), ated from the pseudo-prior. The pseudo-prior is likely
where c 2 is a hyperparameter. This prior has been used to influence the performance of these algorithms and
extensively in Bayesian variable selection for the conven- hence it should be specified with caution.
tional linear model. Since the position �j is highly dependent on xj , we

The prior distributions on the model index � and jointly update �j and xj . The joint full conditional poste-
the genetic effects � may be the most critical factors rior distribution for the location and genotype indicator
influencing the performance of the algorithms and thus of the jth QTL is
deserve careful attention. The hyperparameter w or L
in the prior of � controls the expected proportion of
genetic effects and the number of QTL included in the p(�j , xj |�, ��j , x�j , �, y) �







p(y|�, x�, ��)p(�j |��j )p(xj |�j )p(��|�, x�)
if �j � 1

p(�j |��j )p(xj |�j )
if �j � 0,

model. The prior covariance matrix or the hyperpara-
(14)meter c in the prior of � controls the expected size of

genetic effects included in the model. Small w or L and where ��j (x�j) represents all elements of � (x) except
large prior variance or c would concentrate the prior �j (xj). This posterior is not a standard distribution, and
on parsimonious models with large effects, and large w thus the M-H algorithm is needed to update �j and xj
or L and small prior variance or c would concentrate jointly. We first propose a new location �*j from q(�*j ;
on saturated models with small effects. The reasonable �j), and then generate genotype indicator x*j at this new
choices of c and w would account for the sample size location for all individuals from the posterior q(x*j ) �
n, the marker information, and the upper bound of p(xj |�, �, x�j , �, y). The proposals for the new location
QTL K. For the conventional linear model, Fernandez and the genotype indicator are then accepted or re-
et al. (2001) recommended c � max{n, K 2}. George and jected simultaneously with probability
Foster (2000) proposed treating c and w as unknown
parameters and using empirical Bayes estimates of c min�1,

p(�*j , x*j |�, ��j , x�j , �, y)q(�j ; �*j )q(xj)

p(�j , xj |�, ��j , x�j , �, y)q(�*j ; �j)q(x*j ) � (15)
and w based on the data. Finally, we could consider
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(Yi and Xu 2001). Two schemes can be employed to parameters, i.e., p(�j |�j) � (1 � �j)N(0, �) � �jN(0, c2�),
so that p(�j |�j � 1) � N(0, c 2�) and p(�j |�j � 0) � N(0,propose a new location, �*j : (1) local move, propose

�*j from Uniform(�j � d, �j � d), where d is a predeter- �). Then, the third term should remain in (18).
We also can apply the M-H algorithm to update themined tuning parameter; and (2) long range move,

propose �*j uniformly from the corresponding region model index � conditional on other unknowns. The
M-H algorithm is not based on sampling directly from(Gaffney 2001). Note that under the conjugate prior,

the parameter � can be integrated out from the poste- the full conditional, but on a proposal for a move from
� to ��, followed by acceptance or rejection of thisrior distribution (14). Therefore, the joint full condi-

tional posterior distribution becomes proposal. Although the M-H sampler can in principle
update multiple components of � simultaneously, we
discuss only the simplest strategy where only one compo-p(� j , xj |�, ��j , x�j , y) �





p(y|�, x�)p(�j |��j )p(xj |�j ) if �j � 1
p(�j |��j )p(xj |�j ) if �j � 0, nent in � is proposed; thus at each iteration we actually

(16) propose to add or delete one QTL. We assume that the
jth element of � is proposed with probability q(��; �);which is independent of �.
then the acceptance probability, using the standard M-HThe full conditional posterior distribution of xij is
algorithm, is given by min(1, r), where the acceptancegiven by
ratio r is

p(xij |�, �, x�ij , �, y) �




p(yi |�, x�, ��)p(xij |�j )p(�� |�, x�) if �j � 1
p(xij |�j ) if �j � 0, r �

p(�j � s|��j , �, x, �, y)
p(�j � 1 � s|��j , �, x, �, y)

·
q(�; ��)
q(��; �)(17)

where x�ij represents all elements of x except xij. This �
p(y|��, x��, ���)p(��)p(�j |�j � s)

p(y|�, x�, ��)p(�)p(�j |�j � 1 � s)
·

q(�; ��)
q(��; �)

, (19)
posterior is a discrete distribution and thus easily sam-
pled. where � � (�j � 1 � s, ��j), �� � (�j � s, ��j), and

Note that when the jth QTL is not included in the s � 1 or 0 corresponding to adding or deleting one
model, the posteriors of the genetic effects, location, QTL, respectively.
and genotype indicators for this QTL are identical to The proposals q(��; �) can be set to pa or pd/(l � 1),
the corresponding priors. The values of these unknowns depending on s � 1 or 0, where l is the number of 1’s
are required to update the indicator variable of the in �, which equals the current number of QTL, and pa
QTL. Therefore, we first describe the methods for up- and pd are constants satisfying pa � pd � 1. This proposal
dating the model index on the basis of the values of scheme is equivalent to that commonly used in Bayesian
these unknowns sampled from their priors. However, QTL mapping. Alternatively, we can set [p(�)q(�; ��)]/
sampling from the priors does not update or make use [p(��)q(��; �)] � 1 (Gaffney 2001). Under our com-
of our current knowledge about these unknowns and posite model space, however, two new schemes can be
hence cannot possibly produce an optimal sampler. developed, borrowing the idea of variable selection: (1)

The standard MCMC procedures, Gibbs sampler and We pick one of the K variables (QTL) at random and
M-H algorithm, can be applied to update the model either delete or add it if it is currently or not, respec-
index �. Several different methods can be developed tively, in the model; thus we have that q1(��; �) � q1(�;
as follows. ��) � 1/K, or (2) we can update �j for all j � 1, . . . ,

Method I: The full conditional posterior distribution K sequentially or in random order; thus we have that
of the indicator variable �j is given by q1(��; �) � q1(�; ��) � 1. Under both these schemes, the

move proposal probability cancels from the acceptancep(�j � s|��j , �, x, �, y) � p(y|�j � s, ��j , x�, ��)p(�j � s, ��j )p(�j |�j � s),
probability ratio (19).

j � 1, . . . , K, (18)
The above M-H algorithm is equivalent to a reversible-

jump algorithm with reflecting boundaries at 0 and Kwhere ��j represents all elements of � except �j . This
posterior is a Bernoulli distribution and thus easily sam- QTL. To describe this relationship, we assume s � 1,

which corresponds to adding one QTL into the model.pled. The sampling can be implemented sequentially
or in random order. The reversible jump can proceed to generate a new

location and the genotype indicators at the new locationThis Gibbs sampler includes several Bayesian variable
selection methods as special cases, depending on the from the priors and the associated effects �j from p(�j |

�j � 0). Then, the acceptance ratio is given, using theprior specifications of �j (Ntzoufras 1999; Dellapor-
tas et al. 2002). Kuo and Mallick (1998) use a prior reversible-jump algorithm of Green (1995, 2003), by

(19). This reversible-jump algorithm has been widelydistribution p(�j), which is independent of �j so that
p(�j |�j � 1) � p(�j |�j � 0). Then, the third term on used in Bayesian QTL mapping (e.g., Heath 1997; Sil-

lanpää and Arjas 1998, 1999; Stephens and Fischthe right-hand side of (18) can be omitted. Similar to
George and McCulloch (1993), Dellaportas et al. 1998; Yi and Xu 2000).

Method II: The above algorithm is conditional on the(2002) use a mixture of normal distribution for model
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value of �j sampled from the pseudo-prior when �j is Therefore, � can be updated independent of �. This
method is equivalent to that by Smith and Kohn (1996)proposed to add into the model. More efficient MCMC

algorithms by using blocking strategies can be devised for the conventional linear regression model. Broman
and Speed (2002) have applied this method to markerto yield improved performance. Under the linear model

(2), we can choose the pseudo-prior for �j to be the selection in a backcross design. This approach is equiva-
lent to a blocking scheme, which first draws �� from theconditional posterior for �j with �j � 1; that is, set
full conditional posterior p(�� |�j � 1, ��j , x, y) and

p(�j |�j � 0) � p(�j |�j � 1, ��j , x, ���j
, y), then draws �j from p(�j � s|��j , �, x, �, y). This equiva-

lence can be seen more explicitly from the followingwhere ���j
means all elements of � except �j . The sam-

M-H version.pling step for �j then reduces to
Assume that a proposal for a move from � � (�j �

1 � s, ��j) to �� � (�j � s, ��j) with probability q(��;p(�j � s |��j , �, x, ���j
, y) � �

�j

p(�j � s, �j |��j , �, x, ���j
, y)d�j

�); the acceptance ratio is given, using the standard(20)
M-H procedure, by

(Godsill 2001). This approach is equivalent to a sam-
pling scheme, which first draws �j from p(�j|��j , x, r �

p(�j � s|��j , �, x, y)
p(�j � 1 � s|��j , �, x, y)

·
q(�; ��)
q(��; �)���j

, y) and then draws �j from p(�j|�j � s, ��j , �, x, �,
y). This scheme actually draws jointly for (�j , �j). This

�
p(y|��, x�� )p(��)
p(y|�, x� )p(�)

·
q(�; ��)
q(��; �)

. (24)blocking procedure can be viewed as equivalent to that
used by Geweke (1996).

Using the identity p(�j � s|��j , x, y) � p(�j � s, ��|��j ,A Metropolis-Hastings version of the above blocking
x, y)/p(��|�, x, y), the acceptance ratio then becomesprocedure can be easily designed. Assume that the jth

element of � is proposed with probability q(��; �). The
r �

p(�j � s, ��|��j , �, x, y)
p(�j � 1 � s, ��� |��j , �, x, y)

·
q(�; ��)p(��|�, x�, y)

q(��; �)p(��� |��, x�� , y)acceptance ratio is given by

r �
p(�j � s |��j , �, x, ���j

, y)

p(�j � 1 � s |��j , �, x, ���j
, y)

·
q(�; ��)
q(��; �)

, (21) �
p(y|��, x�� , ���)p(��)p(��� |��)

p(y|�, x�, �� )p(�)p(�� |�)
·

q(�; ��)p(�� |�, x�, y)
q(��; �)p(��� |��, x��, y)

.

(25)
where � � (�j � 1 � s, ��j), �� � (�j � s, ��j), and

This is exactly the acceptance ratio for the reversible-s � 1 or 0 corresponding to adding or deleting one
jump sampler, which proceeds to generate a new loca-QTL, respectively.
tion and the genotype indicators at the new locationUsing the identity p(�j � s|��j , x, ���j

, y) � p(�j � s,
from the priors and all the associated parameters ���j |��j, x, ���j

, y)/p(�j |�j � s, ��j , x, ���j
, y), the accep-

from the full conditional posterior, p(�� |�, x, y). Suchtance ratio (21) for s � 1 then becomes
a scheme can be viewed as equivalent to the MC3 method
of Raftery et al. (1997) for linear regressions. Noter �

p(�j � 1, �j |��j , �, x, ���j
, y)

p(�j � 0, �j |��j , �, x, ���j
, y)

·
q(�; ��)p(�j |�, x, ���j

, y)

q(��; �)p(�j |��, x, ���j
, y) that the method developed by Gaffney (2001), in which

all the associated effects �� are sampled from p(�� |�,
x, �, � 2, y), is close to the above approach.�

p(y|��, x�� , ���)p(��)p(�j |��)
p(y|�, x�, ��)p(�)p(�j |�)

·
q(�; ��)p(�j |�, x, ��, y)
q(��; �)p(�j |��, x, �� , y) The major difference among these three methods is

the proposal distribution on the genetic effects. Propos-
�

p(y|��, x�� , ��� )p(��)p(�j |��)
p(y|�, x� , �� )p(�)

·
q(�; ��)

q(��; �)p(�j |��, x, �� , y)
,

ing the new genetic effects from the prior does not seem
(22) to be the best choice. It places an extraordinary burden

on prior specification for the effects (Gaffney 2001).
where � � (�j � 0, ��j) and �� � (�j � 1, ��j). In methods II and III, the corresponding parameters

This M-H algorithm is equivalent to the reversible- are integrated out from the posteriors, or equivalently
jump algorithm, which proceeds to generate a new loca- the blocking strategies are used. Since the acceptance
tion and the genotype indicators at the new location

probabilities are independent of parameter values, the
from the priors and the associated effects �j from the full

samplers would lead to excellent exploration of model
conditional posterior, p(�j |��, x, �� , y). This reversible-

space (Godsill 2001). This advantage results from the
jump algorithm is similar to that developed by Yi and

use of the full conditional posterior as reversible-jumpXu (2001, 2002).
proposals. This would suggest that reversible-jump pro-Method III: Under the linear model (2), in fact, all
posals should be designed to approximate as close asparameters � can be integrated out from the conditional
possible the full conditionals.posterior distribution (18), i.e.,

General formula and improved strategies: We can
derive a general formula that includes the algorithmsp(�j � s |��j , x, y) � p(y|�j � s, ��j , x� ) p(�j � s, ��j).

(23) discussed above as special cases. Consider a proposal
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from the current state of the composite space (�, �, steps to propose the values of unknowns (���� , x��� , ���� )
and then have the factorizationx, �) to a new state (��, ��, x�, ��) with the proposal

distribution q(��, ��, x�, ��; �, �, x, �). Using the stan-
q2(���� , x��� , ���� ; ��, x�, ��) � q21(����|��)q22(x���|����)q23(����; ��).

dard M-H procedure, the acceptance probability for this (28)
proposal is given by

Conditional on (�, ��, x�), model (2) is a conventional
linear model and thus q23 can be taken to be the fullmin�1,

p(��, ��, x�, �� |y)q(�, �, x, �; ��, ��, x�, ��)
p(�, �, x, �|y)q(��, ��, x�, ��; �, �, x, �) � .

conditional posterior p(��|�, x, y), which results in the
acceptance probability independent of ��. Sampling(26)
(��, x�) is a special problem in QTL mapping. There-
fore, performance of MCMC mapping proceduresThe proposal can be split into three components:
should depend highly on the specifications of q21 and

q(��, ��, x�, ��; �, �, x, �) q22. In all the previous algorithms, the location ��j and
the genotypes x�j are proposed from their priors. This� q1(��; �)q2(����, x���, ����; ��, x�, ��)p(�����, x����, �����|��).
sampling scheme may be suboptimal since each locus

The first component q1 proposes a move to a new model is chosen with equal probability no matter which one
index ��. The second term q2 is the proposal for the has weak or strong linkage evidence. Sampling ��j from
unknowns used by model ��. The third term is the the prior also means that the information about the jth
proposal probability for the remaining unused unknowns, QTL is totally lost as soon as we delete this QTL from
which is chosen to equal the pseudo-prior p(����� , x���� , the model; this usually causes low acceptance probability
����� |��). The acceptance ratio then reduces to and greatly influences the mixing behavior. To improve

performance of reversible jump, it may be desirable to
r �

p(��, ��, x�, ��|y)q(�, �, x, �; ��, ��, x�, ��)
p(�, �, x, �|y)q(��, ��, x�, ��; �, �, x, �)

choose a location with stronger linkage evidence. The
proposal q21(��j |��) then has unequal probability over
the genome. Lee and Thomas (2000) developed a

�
p(��, ���� , x��� , ���� |y)p(����� , x���� , ����� |��)

p(�, ��, x�, ��|y)p(��� , x�� , ��� |�) method to propose a location by scanning the unoccu-
pied regions of the entire genome for evidence of link-
age of the trait residuals. Although the method of Lee·

q1(�; ��)q2(��, x �, ��; ���� , x��� , ���� )p(��� , ��� , x�� |�)
q1(��; �)q2(���� , x��� , ���� ; ��, x�, ��)p(����� , ����� , x���� |��) and Thomas (2000) has greatly improved the accep-

tance ratio, it largely increases computational load. With
�

p(��, ���� , x��� , ���� |y)
p(�, �� , x� , �� |y)

·
q1(�; ��)q2(�� , x� , �� ; ���� , x��� , ���� )
q1(��; �)q2(���� , x��� , ���� ; �� , x� , �� )

. the composite model space approach, we are able to
design an algorithm in which the values for any locus can(27)
be retained until this locus is next visited. An efficient

This is exactly the acceptance ratio for the reversible- scheme could be designed as follows: If the jth QTL
jump sampler with the proposal distribution factored was ever included in the model, the last location of
into two components, q1(.) and q2(.) (Green 1995, 2003; this QTL is directly taken; otherwise, a new location is
Godsill 2001, 2003). This derivation of reversible jump sampled from the prior. Clearly this easy-to-use method
is obtained purely from an application of the standard makes use of our current knowledge about the QTL
M-H method to fixed-dimensional composite model locations and thus should improve the performance of
space. We see that the acceptance probability is indepen- MCMC algorithms.
dent of the value of any parameters that are unused by
both models k and k�. Hence sampling of these unused

DISCUSSIONunknowns is only a “conceptual” step, which need not
be performed in practice. The aim of including these Mapping multiple QTL can be viewed essentially as
unused parameters is to build a fixed-dimensional a problem of model selection (e.g., Broman and Speed
model space. 2002; Sillanpää and Corander 2002). A variety of

The performance of the above M-H sampler is deter- Bayesian model selection procedures have been devel-
mined by the proposal distributions q1(.) and q2(.). The oped for conventional statistical models (see Chipman
optimal choice of proposal q2(���� , x��� , ���� ; ��, x�, ��) et al. 2001; Godsill 2001; Dellaportas et al. 2002).
should be the full conditional p(���� , x��� , ����|��, y) . This Although some of these procedures, e.g., reversible-
scheme produces an M-H sampler with the posterior jump algorithm, have been applied to map multiple
model p(�|y) as the target distribution and thus leads to QTL, others have not yet. To date, most applications
excellent exploration of model space (Godsill 2001). of reversible jump have conducted proposals on an ad
Unfortunately, this full conditional is not available ana- hoc basis. Therefore, there is a need for further method-
lytically. We have to design a proposal that approximates ological work on improving the reversible-jump algo-
as closely as possible the full conditional. As in all exist- rithms for mapping QTL. This article presents a unified

MCMC framework for mapping multiple QTL in experi-ing Bayesian mapping methods, we use three sequential
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mental designs, based on a composite space representa- thus may improve efficiency of detecting complex inter-
acting QTL.tion of the QTL model. We show that various Bayesian

model selection procedures can be modified to map This work was supported by the National Institutes of Health (NIH)
multiple QTL. We also demonstrate that the composite (NIH RO1ES09912, NIH RO1 DK056366, and NIH P30DK056336)

and an Obesity-Related Pilot/Feasibility Studies grant at University ofspace approach leads directly to the reversible-jump al-
Alabama at Birmingham (528176).gorithm. The results add to the overall understanding

of the reversible-jump and the Bayesian model selection
procedures for QTL mapping and lead to new classes
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Sillanpää, M. J., and E. Arjas, 1998 Bayesian mapping of multiple Yi, N., and S. Xu, 2002 Mapping quantitative trait loci with epistatic

quantitative trait loci from incomplete inbred line cross data. effects. Genet. Res. 79: 185–198.
Genetics 148: 1373–1388. Yi, N., D. B. Allison and S. Xu, 2003a Bayesian model choice and
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Sillanpää, M. J., and J. Corander, 2002 Model choice in gene able selection for identifying multiple quantitative trait loci. Ge-
mapping: what and why. Trends Genet. 18: 301–307. netics 164: 1129–1138.

Smith, M., and R. Kohn, 1996 Nonparametric regression using
Bayesian variable selection. J. Econom. 75: 317–344. Communicating editor: J. B. Walsh




